
Submodule construction for systems of I/O automata*

J. Drissi1, G. v. Bochmann2

1 Dept. d'IRO, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, H3C 3J7,
Canada, Phone: (514) 343-6161, Fax: (514) 343-5834, drissi@iro.umontreal.ca

2 School of Information Technology & Engineering, University of Ottawa ,
Colonnel By Hall (A510), P.O.Box 450 Stn A,Ottawa,Ont.,K1N 6N5, Canada,
Phone : (613) 562-5800 ext. 6205, Fax 562-5175 , bochmann@site.uottawa.ca

Abstract. This paper addresses the problem of designing a submodule of a given system of
communicating I/O automata. The problem may be formulated mathematically by the
equation (C||X)rA under the constraint IX=In, where C represents the specification of the
known part of the system, called the context, A represents the specification of the whole system,
X represents the specification of the submodule to be constructed, || is a composition operator,
r is a conformance relation and In is the required set of inputs for X . As conformance
relation, we consider the safe realization and the subtype relation. The subtype relation is a
generalization of the well known criteria of trace equivalence, complete trace equivalence, quasi
equivalence and reduction, while the weaker safe realization relation is implied by all those
criteria. We propose two algorithms for solving the problem with respect to the safe realization
and the subtype relation and we characterize the set of solutions in each case.

1 Introduction

One common problem, encountered in the hierarchical design of complex systems, in the synthesis

of controllers and in the reuse of components, is the submodule construction problem, also called

factorization problem or equation solving problem. The submodule construction problem (SCP) is

to construct the specification of a submodule X when the specification of the system and all

submodules but X are given. Such a problem may be formulated mathematically by the equation

(C||X)rA, where C represents the specification of the known part of the system, A represent the

specification of the whole system, || is a composition operator and r is a conformance relation.

The SCP was first formulated and treated in [13], where specifications are expressed in terms of

execution sequences, and trace equivalence was used as conformance relation. In [19], the author

uses Milner's Calculus of Communicating Systems to model the same problem. Many other works

[7, 18] have been done using labelled transition systems as a model for the specifications and the

* This work was partially supported by the NSERC Strategic grant SRTGP200 "Methods for the systematic testing of
distributed software systems" and an NSERC Research grant.

2

strong and/or the observational equivalences as conformance relations. In [4], we consider this

problem in the context of the input/output Finite State Machine model (I/O FSM) [5]. The direct

application of an approach based on the LTS model is not possible since the solutions obtained are

not in general I/O FSMs. We have to add constraints on the environment behavior to obtain the

system's behavior in the form of an I/O Finite State Machine. We have developed a method for

constructing all the solutions when the specifications are given in the form of deterministic

completely specified input/output Finite State Machines and the trace equivalence relation is used as

conformance relation. This work was generalized in [16] to the case where the specifications are

given in the form of nondeterministic completely specified input/output Finite State Machines and

the reduction relation is used as conformance relation.

We will generalize our previous work by dealing with nondeterministic partially specified

input/output Finite State Machines and by using other criteria such as complete trace equivalence,

quasi-equivalence and reduction of nondeterminism. For this purpose, we consider partial I/O

automata for systems specification, which is more general than input/output Finite State Machines.

An I/O automata corresponding to a given input/output Finite State Machine can always be obtained

by unfolding each atomic input/output transition s-x/y->s' into two consecutive transitions s-x->s”

and s”-y->s' of the corresponding I/O automaton. A fundamental property of the model of I/O

automata is that there is a very clear distinction between those actions that are performed under the

control of the automaton and those actions that are performed under the control of its environment.

An automaton's transitions are classified as either "input" or "output".

In typed object-oriented languages the notion of subtype, that is, a conformity relation

between types, is defined. A type P conforms to another type Q if P provides at least the operations

of Q (P may also provide additional operations). Moreover, the types of the results of P 's

operations must conform to the types of the results of the corresponding operations of Q. Finally,

the types of the arguments of Q's operations must conform to those of P's operations [2]. The idea

behind the notion of subtype is the ability to use an instance of a subtype of a type T whenever an

instance of type T is required to do a job.

While the subtyping relation of object-oriented languages are mainly concerned with the

available operations and the types of their parameters, we are concerned in this paper with the

dynamic behavior of objects, that is, of I/O automata, considering the allowed sequences of input

and output operations. We will define a subtype criterion, denoted s, for the same purpose as in

object-oriented languages, i.e. the possibility to replace any subsystem by an instance of its

subtypes without changing the system's behavior.

3

When composing a collection of partial I/O automata, problems due to unspecified reception

may appear when a receiving I/O automaton does not have an input transition originating from the

present state when the sending IOA executes a corresponding output transition. A composition of a

collection of I/O automata is said to be safe if it does not contains unspecified receptions [8, 14].

We define the safe realization of an I/O automaton A by a composite IOA B=B1||B2||...||Bn,

denoted B ≤SA as follows: for any environment modeled by an I/O automaton E , if the

composition of A and E is safe then the composition of B1, B2, ..., Bn and E is also safe. The safe

realization criterion does not allow us to enforce mandatory output behaviors in certain given

states, i.e. an IOA B which is a safe realization of an IOA A, will accept all the inputs accepted

from the initial state of A and may produce no output. In the paper "Modal Specifications" [9], the

author presents a theory of Modal Specifications which imposes restrictions on the transitions of

possible implementations by telling which transitions are mandatory and which are admissible.

This allows a refinement ordering between Modal Specifications to be defined. To deal with the

problem of mandatory output behaviors and also to be able to represent the set of solutions to the

equation (C ||X)sA as the set of subtypes of a particular type (or model) in the same modelling

framework, we enhance the model of I/O automata by allowing the imposing of conditions on the

set of traces from a given state. We call such a model an "I/O automata with optional complete

traces". With each state s we associate two sets: the first set contains sets of traces from s such that

at least one trace in each set must be present in any implementation of this automaton; the second

set is a subset of the traces from s and each time an execution, starting in s, is a prefix of an

element of this set, the execution should progress to complete a trace in this set. We assume that an

implementation is a normal (partial) I/O automaton. We will introduce a progress property which

formalizes the preceding notion. Moreover, by requiring safe realization and realization of the

progress property, we obtain the subtype relation. We show in this paper that the subtype relation

is a generalization of the well known criteria trace equivalence, complete trace equivalence, quasi

equivalence and reduction.

Since in a composition of a collection of IOAs the sets of inputs are not disjoint, we

generalize the architecture by allowing the component that will be designed, to observe some

interactions between the environment and the context. This is done by adding to the equation a

constraint on the required set of inputs of the solution. For the two criteria, safe realization and

subtype, we propose for each an algorithm that produces an I/O automaton solution to the equation

(C ||X) rA under the constraint IX=In if such a solution exists. We prove that the set of possible

solutions is then either the set of safe realizations or the set of subtypes of the obtained solution,

depending on which criterion was in the equation.

4

This paper is structured as follows. In Section 2, we define basic notions. In Section 3, we

introduce the safe realization and the subtype relations and we compare them with the trace

equivalence, complete trace equivalence, quasi equivalence and reduction criteria. Section 4

presents the submodule construction problem and the architecture in which this problem will be

solved. In Section 5, we propose an algorithm for solving the problem with respect to the safe

realization relation and we characterize the set of solutions. In Section 6, we propose an algorithm

to solve the problem with respect to the subtype relation and we characterize the set of solutions. In

Section 7, we show that the submodule construction problem for non-deterministic partially

specified input/output Finite State Machines is a particular case of the results in Section 6 for the

trace equivalence, quasi equivalence and reduction criteria. Finally, in Section 8 we conclude the

paper. The proofs of the theorems are in the annex.

2 Input-Output Automata

2.1 Basic notions and definitions

In this paper, an I/O automaton (briefly IOA) A, is a 5-tuple (SA, IA, OA, TA, soA) where SA is a

finite set of states with soA as the initial state, IA is a non-empty, finite set of inputs, OA is a non-

empty, finite set of outputs with IA∩OA=Ø and TA⊆SA×(IA∪OA)×SA is a transition set. An

element (s, u, s')[TA is denoted by s-u.s'. If for each s[SA and all x[IA there exists s'[SA such

that s-x.s', then A is said to be completely specified or input-enabled; otherwise A is

partially specified. An IOA A is said to be nondeterministic if there exist s-u.s', s-u.s"

and s'≠s" for some s and u; otherwise A is deterministic. For a deterministic IOA A, the

outgoing transitions of each state are uniquely labeled. For each state s[SA, we denote

inp(s)={x[IA| ¡s'[SA s-x.s'}, out(s)={y[OA| ¡s'[SA s-y.s'}, entering(s)={u[(IA∪OA)|

¡s'[SA s'-u.s}, and leaving(s)=inp(s)∪out(s). The input-enabled form of an IOA A, denoted

by Ief(A), is obtained by adding to each state s transitions for the non-specified inputs (IA\inp(s))
leading to the special state Fail, i.e., Ief(A)=(SA, IA, OA, TA∪(∪s[SA({s}×(IA\inp(s)){Fail})),

soA).

If there exist states s1, ..., sk+1∈SA such that (si, ai, si+1)∈TA, for each i =1,...,k, then

the k-tuple ((s1, a1, s2), (s2, a2, s3), ...,(sk, ak, sk+1)) is said to be an execution starting in s1.

The sequence σ=a1...ak ∈(IA∪OA)* is said to be a trace from the state s1. The set of traces from

the state s is denoted TrA(s) and we denote it TrA if s=soA. For a deterministic IOA A, a state s and

a sequence σ∈TrA(s) uniquely determine the final state of the trace σ which we denote sσ. A state

s' of an IOA A is reachable from a state s if there exists σ∈TrA(s) such that sσ=s'. If s is the

initial state of A then s' is said to be reachable. The set {s1, s2, ..., sk, sk+1}, denoted by S(s1, σ),

represents the set of states reachable from s1 by a prefix of σ. For each sequence σ∈Σ* and a

5

subset Σ' of Σ, the Σ'-projection of σ, denoted PrΣ'(σ), is obtained by deleting from σ each

symbol which is not in Σ'. For simplicity, we denote also by PrΑ(σ), the projection of σ over the

alphabet (IA∪OA) of the IOA A. For a set of traces Y, we denote by PrΣ'(Y), the set containing the

Σ'-projection of the elements in Y. For a set X containing sets of traces, we denote by PrΣ'(X), the

set {PrΣ'(Y)| Y[X}.

The connected component of A containing the initial state is the IOA CC(A)=(SC, IC,

OC, TC, soC) such that SC={s∈SA| s reachable}, IC=IA, OC=OA, TC={(s, u, s')[TA| s∈SC} and

soC=soA. If A=CC(A) then A is said to be initially connected.

We define a chaos IOA, whose traces contain all the words over the alphabet, by

Ch=({ch}, I, O, H, ch), where H={(ch, t, ch) | t[I"O}.

2.2 The composition of I/O automata

A system can be considered as a finite collection of IOAs communicating with one another and

with the environment. The composition of IOAs is defined in the case of complete IOAs in [12],

and in the case of partial IOAs in [8, 14]. In the second case problems due to unspecified reception

may appear when a receiving IOA does not have an input transition originating from the present

state when the sending IOA executes a corresponding output transition.

Definition 1 : Given a collection of IOAs (Ai=(SAi, IAi, OAi, TAi, soi))1≤i≤n, such that the sets

(OAi)1≤i≤n are pairwise disjoint. The composition of (Ai)1≤i≤n, denoted A1||A2||...||An, is defined

as the connected component of the IOA A=(SA, IA, OA, TA, soA) where :

- SA=SA1×SA2× ...×SAn,

- IA=(IA1∪IA2∪ ...∪IAn)\(OA1∪OA2∪ ...∪OAn),

- OA=OA1∪OA2∪ ...∪OAn,

- ((s1, s2, ...,sn), u, (s1', s2', ...,sn'))[TA iff for all i[{1, 2, ..., n}, if u[(IAi∪OAi) then

(si, u, si')[TAi, else si=si',

- soA=(so1, so2, ...,son).

The composition of IOAs is commutative and associative. This composition allows a

number of IOAs to accept the same input simultaneously.

Following the work of [14], we define a safety property which formalizes the non-

occurrence of an unspecified reception in the composition A of a collection of IOA (Ai=(SAi, IAi,

OAi, TAi, soi))1≤i≤n. We denote by ε the empty word.

6

Definition 2 : Given a collection of IOA (Ai=(SAi, IAi, OAi, TAi, soi))1≤i≤n, the composition

A = A 1 ||A 2 ||... | |A n is safe, written S (A), iff any word t in (IA ∪ O A)* such that

PrAi(t)∈TrAi.(IAi∪{ε}) for all i, is a trace of A (i.e. t∈TrA).

We illustrate the preceding concepts with the following example (Figure 1, 2, 3). We

consider the IOAs A1 and A2 with IA1={x, x', z}, OA1={u, y}, IA2={u} and OA2={z}. For the

composition A=A1||A2 we have IA={x, x'} and OA={u, z, y}.

a b c d
x u

x' z

y e f gu z

Figure 1 : The IOA A1 Figure 2 : The IOA A2

(a, e) (b, e) (c, f)

(d, f)(d, g)(c, g)

x u

x'y
z

y

x'

Figure 3 : The IOA A1||A2

We define now a hiding operator which allows us, for example, to hide actions considered

to be internal in a composition. Given an IOA A and a subset Σ of (IA∪OA), we define HΣ(A) to

be the IOA obtained from A by first replacing all the actions in Σ by the internal action τ and then

determinizing the obtained automaton. In Figure 4, we have D=H{u, z}(A1||A2), ID={x, x'} and

OD={y}.

x

y

x'

y
x'

y

{(a, e)} {(b, e), (c, f),
 (d,g)}

{(d, g)} {(c, g)} {(c, f), (d, g)}y

{(d, g)}

x'

Figure 4 : The IOA H{u, z}(A1||A2)

3 The conformance relations

3.1 The safe realization relation

Definition 3 : For an IOA A and a composite IOA B=B1||B2||...||Bn, with IA=IB, we say that B

realizes A with safety, written B ≤S A, iff for every IOA E, with IE=OA and OE=IA, S(E||A)

implies S(E||B1||B2||...||Bn).

7

Definition 3 means that for any environment E over the alphabet of A if the composition of

A and E is safe then the composition of B1, B2, ..., Bn and E must also be safe, i.e. in any

reachable state of the composition E||B1||B2||...||Bn, there is no unspecified reception.

Definition 4 : The reflection of an IOA A=(SA, IA, OA, TA, soA) is the IOA Ã=(SA, IÃ, OÃ,

TA, soA) where IÃ=OA, OÃ=IA.

If for any state of A, we add some outputs then the composition of the obtained IOA with Ã

will be non safe. Also, if we add some outputs for any state of Ã, the composition of the obtained

IOA with A will be non safe. Intuitively, Ã represents the most liberal environment in with A is

safe.

Lemma 1: For an IOA A and a composite IOA B=B1||B2||...||Bn, with IA=IB, the following

propositions are equivalent :

i - S(Ã||B1||B2||...||Bn),

ii - for every IOA E, with IE=OA and OE=IA, S(E||A) ⇒ S(E||B1||B2||...||Bn).

In the example in Figure 3, the IOA A=A1||A2 is not safe since for the trace t=xux'z in

(IA∪OA)* we have PrA1(t)∈TrA1.(IA1) and PrA2(t)∈TrA2, but we do not have t∈TrA. However,

for the IOA S given in Figure 5, we have that the I/O automaton A=A1||A2 realizes S with safety,

since S does not allow for the visible trace xx' corresponding to the above trace t.

1 2 3x
y

x'

a b c d
x u

x' z

y u

 Figure 5 : The I/O automaton S Figure 6 : The I/O automaton A3

If we consider the IOA A3 in Figure 6 with IA3=IA1 and OA3=OA1, we remark that

A3||A2=A1||A2 but A3||A2 does not realize S with safety since for the trace t'=xuzyx'u in (IA∪OA)*

we have PrA3(t')∈TrA3, PrA2(t')∈TrA2.(IA2) and PrS(t')∈TrS, but t' is not a trace of the

composition S ||A3||A2.

3.2 The subtype relation

The safe realization relation is a weak criterion since it allows an IOA B which is a safe

realization of an IOA A, to accept all the inputs accepted from the initial state of A and to produce

no output. To deal with the notion of task completion, which imposes conditions on the set of

outputs produced after a given execution and also to be able to represent the set of solutions to the

8

equation (C ||X)sA as the set of subtypes of an element in the same model, we need to enhance

the definition of an IOA to take into account these conditions. This leads to the definition of I/O

automata with optional complete traces.

Definition 5 : An I/O automaton with optional complete traces A (briefly IOAWOCT), is a 3-

tuple (IOAA , M T A , OCT A) where IOAA is an IOA , M T A ={(s, M T A(s))| s∈ SA} with

MTA(s)⊆2TrIOAA(s) and OCTA={(s, OCTA(s))| s∈SA} with OCTA(s)⊆TrIOAA(s).

An IOAWOCT A can be considered to be a specification. The sets MTA(s) and OCTA(s)

impose constraints on the traces of valid implementations of A. We consider implementations in the

form of IOA. An element Y of MTA(s) imposes that at least one trace of Y, is a possible trace of

the implementation in the state corresponding to s. Moreover, each time, an execution starting in

the state corresponding to s in the implementation has a trace whose projection over the alphabet of

IOAA is a prefix of an element of OCTA(s), this execution should progress to complete some trace

whose projection over the alphabet of IOAA is in OCTA(s). We note that if OCTA(s) contains only

elements of length equal to one, it does not impose any constraint on the implementations having

the same alphabet as IOAA. In the case where the implementation has a different alphabet from the

alphabet of IOAA, the elements of length equal to one in OCTA(s) prohibit traces without external

output.

An IOA A can be viewed as an IOAWOCT, which we call Awoct, and which is constructed

as follow : IOAAwoct=A and for each state s of A M T Awoct(s)={{y}| y∈ out(s)}and

OCTAwoct(s)=Ø. With this consideration, the set of IOAs is included in the set of IOAWOCTs.

Consider an IOAWOCT A and an environment E such that S(E||IOAA). If we want to

replace A in the environment E by an IOA B which is a subtype of A, then B must be a safe

realization of IOAA, i.e. B ≤S IOAA, moreover, since in each state s of IOAA, there are some

conditions on the set TrIOAA(s), then B must realize these conditions. In the following definition,

we formalize this notion by what we call the progress property. We note Pref(X) the set of all non-

empty prefixes of elements of a set of traces X.

Definition 6 : Given a deterministic IOAWOCT A, we say that the deterministic IOA B with

IB=IIOAA realizes the progress property with respect to the IOAWOCT A, written B ≤P A, iff

If MTA(soIOAA)≠Ø then

i - for every X of MTA(soIOAA), PrIOAA(TrB(soB))∩X≠Ø,

ii - for every σ1∈TrB(soB), if PrIOAA(σ1)∈Pref(OCTA(soIOAA)) then there exists

σ2∈TrB((soB)σ1) such that PrIOAA(σ1σ2)∈OCTA(soIOAA).

9

And, for every σ t∈ TrB with t∈ (II O A A∪ O I O A A), if σ '= Pr I O A A(σ t)∈ TrI O A A and

MTA((soIOAA)σ')≠Ø then

iii - for every X of MTA((soIOAA)σ'), PrIOAA(TrB((soB)σt))∩X≠Ø,

iv - for every σ1∈TrB((soB)σt), if PrIOAA(σ1)∈Pref(OCTA((soIOAA)σ')) then there exists

σ2∈TrB((soB)σtσ1) such that PrIOAA(σ1σ2)∈OCTA((soIOAA)σ').

The conditions (i) and (iii) impose that one trace from each element of MTA((soIOAA)σ') is

present in the projection over the alphabet of IOAA of TrB((soB)σt). The conditions (ii) and (iv)

impose that each trace of TrB((soB)σt) whose projection over the alphabet of IOAA is a prefix of an

element of OCTA((soIOAA)σ'), can progress to complete a trace in TrB((soB)σt) whose projection

over the alphabet of IOAA is an element of OCTA((soIOAA)σ').

Now, we give a formal definition for the notion that an IOA is a conforming

implementation of an IOAWOCT by requiring safe realization and realization of the progress

property.

Definition 7 : Given a deterministic IOA B and a deterministic IOAWOCT A with IB=IIOAA, B is

said to be a conforming implementation of A, written B≤confA, iff B ≤P A and B ≤S IOAA .

We remark that in the case where IOAA is completely specified, B≤confA and IB⁄IA

implies PrIOAA(TrB)⊆TrIOAA.

We say that an IOAWOCT B is a subtype of an IOAWOCT A if all conforming

implementations of B are also conforming implementations of A.

Definition 8 : A deterministic IOAWOCT B is a subtype of a deterministic IOAWOCT A, written

BsA, if for any deterministic IOA C : C≤confB implies C≤confA.

Lemma 2 : Given a deterministic IOA B and a deterministic IOAWOCT A with IB=IIOAA. The

following propositions are equivalent :

i - B ≤confA ii - BwoctsA.

3.3 Others conformance relations

We will compare some well known conformance relations with the subtype and the safe

realization relations.

3.3.1 Trace equivalence

10

The IOAs A and B are said to be trace-equivalent, written B–A, iff TrA =TrB. Given an

IOA A, a trace σ∈TrA is said to be a complete trace iff leaving((soA)σ)=Ø. The set of complete

traces is denoted CTrA. The IOA B is said to be complete trace-equivalent to the IOA A, written

B=cteA, iff TrA =TrB and CTrA =CTrB [6]. In the case of deterministic IOAs, the complete trace-

equivalence reduces to the trace-equivalence.

Lemma 3: Given two deterministic IOAs A and B, with IA =IB and OA =OB. The following

propositions are equivalent :

i - B =cteA,

ii - B ≤confAwoct and A ≤confBwoct.

3.3.2 Quasi-equivalence

The IOA B is said to be quasi-equivalent to the IOA A, written B ≤qeA, iff

∀σ∈TrA (σ∈TrB ∧ out((soA)σ)=out((soB)σ)).

The quasi-equivalence relation requires that TrA⁄TrB and after any trace in TrA, A and B

produce the same set of outputs [11, 17].

Lemma 4: Given two deterministic IOAs A and B, with IA =IB and OA =OB. The following

propositions are equivalent :

i - B ≤qeA,

ii - B ≤confAwoct.

3.3.3 Reduction of nondeterminism

The IOA B is said to be a reduction of the IOA A, written B ≤redA, iff for each trace σ in

TrA if σ is in TrB then :

inp((soA)σ)⁄inp((soB)σ) ∧ out((soB)σ)⁄out((soA)σ) ∧ (out((soA)σ)≠Ø ⇒ out((soB)σ)≠Ø).

Lemma 5: Given two deterministic IOAs A and B, with IA =IB and OA =OB. We denote by Ared

the I O A W O C T such that IOAA red=A and for each state s of A M T A red(s)={out(s) }

andOCTAred(s)=Ø. The following propositions are equivalent :

i - B ≤redA,

ii - B ≤confAred.

Lemma 6: Each of the above conformance relations (trace equivalence, complete trace

equivalence, quasi equivalence and reduction) implies the safe realization criterion, that is, if one of

these relations holds between two deterministic IOAs B and A then B is a safe realization of A.

11

4 The design of a submodule

4.1 The architecture

We use the composition of two communicating components (Figure 7) to discuss problems related

to the design of a component of a compound system.

OA

IA

?Context C

External inputs of C non-observable
 by the component

External inputs of C observable by the component

Internal inputs of C

Internal outputs of C

External outputs of C
non-observable by the component

External outputs of C observable by the component

Component

External inputs which are not in the input
 alphabet of the context

 External outputs which
 are not produced by the context

Figure 7: The composition of two communicating components C and Comp

We consider the class of systems which can be represented by two deterministic IOA that

communicate with one another and with an environment. One deterministic IOA, called the context

C , models the known part of the system, the behavior of which is given, while the other

deterministic IOA, called the new component Comp, represents the behavior of a certain

component of the system (the submodule to be designed). The set of inputs accepted by the system

from the environment can be divided into three disjoint sets. The first is the set of inputs of the

context C non observable by the component, the second is the set of inputs of the context

observable by the component, and the third represents the set of inputs of the system which are not

visible by the context. Similarly, the set of outputs delivered by the system to the environment can

be divided in three disjoint sets. The first is the set of outputs delivered by the context C to the

environment which are not observable by the new component, the second is the set of outputs

delivered by the context C to the environment which are observable by the component, and the

third represents the set of outputs of the component accepted by the environment and not delivered

to the context.

4.2 The problem

The problem is known as the problem of submodule construction, redesign or equation

solving, where an appropriate conformity criterion should hold between a designed system and its

12

given specification A and where the system consists of a given component C and a new component

X to be designed. In this paper, we consider this problem as a problem of equation solution in the

realm of IOA for the equation (C||X)rA under the constraint IX=In with X being a free variable,

r is a conformance relation and In a given set of inputs.

In Section 5, we propose an algorithm which takes as input two deterministic IOAs, A and

C, and a set In such that (IA\IC)∪(OC\OA)⊆In⊆IA∪OC, and produces as output an IOA SolS (if it

exists) with ISolS=In and OSolS=(IC\IA)∪(OA\OC), such that the composition of C with SolS is a

safe realization of A. In Section 6, we propose an algorithm which takes as input a deterministic

IOA C, a deterministic IOAWOCT A, and a set In such that (IA\IC)∪(OC\OA)⊆In⊆IA∪OC, and

produces as output an IOAWOCT Sol (if it exists) with IIOASol
=In and OIOASol

=(IC\IA)∪(OA\OC),

such that the composition of C with IOASol is a conforming implementation of A. The existence of

a solution for a given equation depends on the selected set of inputs for the component.

Lemma 7 : If for a given set of inputs In there is no solution, then for any subset of In there is no

solution.

5 The solution for the safe realization criterion

5.1 The proposed method

We use a chaos IOA which represents all the traces over the input alphabet IA∪OC and the output

alphabet (IC\IA)∪(OA\OC); any solution of (C||X) ≤S A is trace included in this chaos automaton.

The main idea of our approach is to remove from the chaos automaton all the traces which

combined with traces of the context C in the environment Ã may cause a non-safe behavior. This

will allow us to capture the set (if not empty) of the permissible traces of the component to be

designed in the form of an IOA SolS, called the generic safe solution. A permissible trace is a trace

of a solution of (C || X) ≤S A. We give in the next paragraph an algorithm which constructs the

generic safe solution if it exists. As input, the algorithm requires two deterministic IOAs C and A

and a set In such that (IA\IC)∪(OC\OA)⊆In⊆IA∪OC. The set In will be used as the input set for

the generic solution.

To be able to characterize those traces of the composition of the chaos automaton and the

context C in the environment Ã which lead to a non conforming behavior with respect to A, we

find in Step 1 the input-enabled forms of Ã and C, and then construct the composed IOA

R=Ief(C)||Ch||Ief(Ã). Since a state of R is a triplet of states of Ief(C), Ch and Ief(Ã), each time we

reach a state of R which contains FailIef(Ã) or FailIef(C), we replace this state by FailR. The

complexity in the worst case of Step 1 is polynomial in the number of states of A and C and the

13

number of elements in the alphabet of A ||C. In Step 2, we replace in R all the actions that are not in

the alphabet of the component to be designed by the internal action τ and we determinize. Since a

state of the obtained automaton, denoted R1, corresponds to a subset of states of R, we declare any
state of R1 which contains FailR as FailR1

. The complexity of Step 2 is in the worst case

exponential in the number of states of A and C. In the third and last step, we remove recursively
from R1 all the traces which lead to the FailR1

state. The complexity of step 3 is in the worst case

polynomial in the number of states of R1.

Algorithm 1

Input : The specification of the context C, the specification of the system A and a set of inputs In.
Output : An IOA SolS with ISolS=In (equal to R1) which satisfies the equation (C||SolS)≤SA if a

solution exists.

Step 1 : R:=Ief(C)||Ch||Ief(Ã).
Step 2 : R1:=H(IA"OC)\In)(R).

Step 3 : (Remove-Fail-state)
WHILE exist a transition s - t . FailR1

 DO

IF t[(IC\IA)∪(OA\OC) THEN Remove this transition;

ELSE
IF s=soR1

 THEN return "NO SOLUTION"; STOP;

ELSE Replace each transition c- t' . s by c- t' . FailR1
;

R1:=CC(R1);

Theorem 1 : Given two deterministic IOAs A and C , and given a set In such that

(IA\IC)∪(OC\OA)⊆In⊆IA∪OC, if Algorithm 1 produces an IOA SolS then (C || SolS) ≤S A, else

there is no solution for (C ||X) ≤S A with the specified input alphabet In.

Example :

a

b g fc

d e
x1

x2

u
uz1

z2

y1

y2

z2 z3

h

z3

z1

z4

1 32

4

x1 x2

x3 y3

y1 y2
y2

A BC

D

x1

x3 y3

z2

E

u

uz2

z 3 z1
z4 F

z 3

Figure 8 : the I/O automata C and the I/O automata A and the I/O automata SolS

We consider for the context the IOA C shown in Figure 8 with IC={x1, x2, z1, z2, z3, z4},

OC={u, y1, y2}, and for the whole system the IOA A shown in Figure 9 with IA={x1, x2, x3},

14

OA={y1, y2, y3} and In={x1, x3, u}. We obtain the solution SolS shown in Figure 10 with the

output set OSolS={z1, z2, z3, z4, y3}.

5.2 The set of solutions

The solution obtained by the previous method is a generic one, which means that we can

derive from it the set of solutions of the equation (C || X) ≤S A .

Theorem 2 : Given two deterministic IOAs A and C , and given a set In such that

(IA\IC)∪(OC\OA)⊆In⊆IA∪OC, an IOA B, with IB=In and OB=OSolS, is a solution of the equation

(C || X) ≤S A iff B ≤S SolS.

Example : Figure 11 shows some other solutions for the example above.

A BC
x1

x3

u

D

A BC

D

x1

x3 y3

z2

E

u

u
z1

A BC

D

x1

x3 y3

E

u

uz2

z 3
F

z 3

Figure 11 : Some safe realizations of SolS

6 The solution for the subtype criterion

As discussed in Section 4.2, we are looking for a solution to the submodule construction problem

when the conforming implementation relation is used. More formally, for a given IOA C and an

IOAWOCT A and a set In such that (IA\IC)∪(OC\OA)⊆In⊆IA∪OC we want to find an IOA X

such that (C ||X)≤confA and IX=In. We describe in Subsection 6.1 an algorithm which returns a

generic solution in the form of an IOAWOCT. A generic solution is a solution from which all the

solutions can be derived. We show in Subsection 6.2 that all the solutions to the equation

(C||X)≤confA under the constraint IX=In are the conforming implementations of the generic

solution. We give in the next paragraph an algorithm which constructs the generic solution if it

exists. As input, the algorithm requires two deterministic IOA C and SolS, and an IOAWOCT A.

To simplify the algorithm, we consider only the case where for each state s of IOAA ,

OCTA(s)=out(s) and MTA(s)⊆2out(s). We denote this restricted class IOAWO, for I/O automaton

with options. This means that each output of s is optional and at least one output of each element of

MTA(s) is a mandatory output.

6.1 The Algorithm

15

We use the IOA SolS which represent the solution to the equation (C ||X) ≤S IOAA (see Section 5)

as a starting point. Any solution of (C ||X)≤confA is trace included in SolS. The main idea of our

approach is to remove from SolS all those traces which, when combined with traces of the context

C in the environment Ã, may cause a non-conforming behavior with respect to the mandatory

traces MTA or the optional complete traces OCTA. This will allow us to capture the set of the

permissible traces of the component to be designed in the form of an IOAWOCT Sol, called the

generic solution (if this set is not empty). A permissible trace is a trace of an IOA which is a

solution of (C ||X)≤confA. The algorithm proceeds in six steps. In Step 1, we construct the

composition of C, SolS and IOAA then we associate to each state of the composition the mandatory

constraints associated to the corresponding state of IOAA. In Step 2, we process the states from

which a constraint is not satisfied and the non-controlable transitions which lead to the Fail state,

i.e. a transition labelled with an action which is not an output of the component to be designed. In

Step 3, we associate with each constrained state c an IOA whose set of traces is equal to the subset

of TrIOAR(c) which is the union of the traces that contain no external action and the traces that

contain a single external action (an output action) as their last element. This IOA will allow us in

the next steps to characterize the mandatory and the complete traces of the solution we are looking

for. In Step 4, we hide the actions which are not in the alphabet of the solution and we associate to

each state the corresponding constraints. In Step 5, we remove recursively all non-conforming

traces. Finally, in Step 6 we construct the generic solution in the form of an IOAWOCT Sol.

A CB

D

x1

x3 y3

x2

y1 y2 y2 y3

a

b g fc

d e
x1

x2

u
uz1

z2

y1

y2

z2 z3

h

z1

z4

i

jkl

z3

x2

x1

u

z3 u

Figure 12 : The IOA IOAA and the IOA C.

To illustrate the work done in each step of the algorithm, we use the following example. We

consider for the context the IOA C shown in Figure 12 with IC={x1, x2, z1, z2, z3, z4}, OC={u,

y1, y2}, and for the whole system the IOAWO A corresponding to the IOAA of Figure 12, with

IIOAA={x1, x2, x3}, OIOAA={y1, y2, y3}, and

MTA={(A, Ø), (B, {{y1}}), (C, {{y2}}), (D, {{y3}})}, and

OCTA={(A, Ø), (B, {{y1, y2}}), (C, {{y2, y3}}), (D, {{y3}})}, and In={x1, x3, u}.

Since the algorithm requires as input the solution for the safe realization relation, we use

first Algorithm 1 to obtain the IOA SolS shown in Figure 13.

16

00 3311

99

x1

x3 y3

z2

22

u

uz2

z 3 z 1
z 4 44

z 3

66

55

7788

x3

y3

u

x1

u
z 3

Figure 13 : The IOA SolS.

Algorithm 2

Input : The specification of the context in the form of an IOA C, the specification of the system

behavior in the form of an IOAWO A and a set of inputs In.
Output : An IOAWOCT Sol with IIOASol=In which satisfies the equation (C||IOASol)≤confA if a

solution exists.

Step 1. In this step, we construct an IOAWOCT R such that IOAR is the composition of C, SolS
and IOAA, and we initialize the sets MTR(c) and OCTR(c) with the empty set for each state c of

IOAR. If MTA(soIOAA) is not empty, we assign it to MTR(soR). For each state c=(s1, s2, s3) in

SIOAR\{soIOAR} such that entering(c)((IIOAA∪OIOAA) and MTA(s3) are not empty, we assign to

MTR(c) the set MTA(s3). This means that for a state c of IOAR where MTR(c) is not empty a

progress property must hold. The complexity of this step is in the worst case polynomial in the

number of states of IOAA and C, and the number of elements in the alphabet of IOAA ||C (i.e.

O(nmr2) where n=number of states of A, m=number of states of C and r=number of element in the

alphabet of A||C).

IOAR=C||SolS||IOAA;

FOR each state c=(s1, s2, s3) in SIOAR DO MTR(c):=Ø; OCTR(c):=Ø;

IF MTA(soIOAA)≠Ø THEN MTR(soIOAR):=MTA(soIOAA);

FOR each state c=(s1, s2, s3) in SIOAR \{soIOAR} such that entering(c)∩(IIOAA∪OIOAA)≠Ø

and MTA(s3)≠Ø DO MTR(c):=MTA(s3);

0 51

15

x1

x3 y
3

2

uz2

z3

z
1

z4
7

z 2

10

6

1112

u

x 1

u
z3

4

3

y
1

y
2 x2

8

z 3y
2

9

13

x2

u

y3

14

x3

y3

Figure 14 : The IOA IOAR

17

For the example, we obtain at the end of Step 1 the IOA IOAR shown in Figure 14 and the

set of constraints MTR={(0, Ø), (1, {{y1}}), (2, Ø), (3, Ø), (4, Ø), (5, {{y2}}), (6, Ø), (7, Ø),

(8, Ø), (9, Ø), (10, {{y1}}), (11, Ø), (12, Ø), (13, {{y2}}), (14, {{y3}}), (15, {{y3}})}.

Step 2. In this step, we remove from IOAR some non-conforming traces. For a state c of IOAR, a

state which can be reached from c with an internal trace is said to be an internal successor of c; the

set containing all external outputs of its internal successors is denoted ext-out-after(c); the state c is

said to be a silent state if ext-out-after(c) is empty. For a state c of IOAR where MTR(c) is not

empty, if ext-out-after(c) does not meet the constraints imposed by MTR(c) then we return "NO

SOLUTION" in the case where c is the initial state, otherwise all the transitions s- t . c labelled

with an external action will be replaced by s- t . FailR and we replace IOAR by its initially

connected component; else for each silent internal successor c' of c we return "NO SOLUTION" in

the case where c' is the initial state, otherwise we replace each transition s- t . c' by s- t . FailR
and we replace IOAR by its connected component. If the intersection of entering(FailR) and

(IIOAA∪OC) is not empty, for each transition s- t . FailR with t in the intersection, we return "NO

SOLUTION" in the case where s is the initial state, otherwise we replace each transition s'- t . s

by s'- t . FailR and we replace IOAR by its connected component. This processing is repeated

until the IOA IOAR can not be updated. At the end of this step, any constrained state satisfies its

constraints and may have only FailR as silent internal successor; moreover all the transitions

leading to FailR are labelled with controllable actions, i.e. outputs of the component to be

designed. To achieve this, we construct two sets : the set NonSilentStates containing those states

of IOAR where an external output occurs; and the set ConstrainedStates which initially contains all

states c of IOAR where MTR(c) is not empty. We repeat the following processing until the set

ConstrainedStates is empty : we remove from ConstrainedStates an element c, and we determine

the set of its internal successors, denoted Succint(c); if there exists an element in MTR(c) such that

its intersection with ext-out-after(c) is empty, then we return "NO SOLUTION" in the case where c

is the initial state, otherwise we replace each transition s- t . c by s- t . FailR for each external

action t and we assign the empty set to MTR(c) and we replace IOAR by its connected component;

now, if all the constraints imposed by MTR(c) are satisfied, i.e. MTR(c) is not empty, we turn our

attention to the silent states in Succint(c); for each such state c', we return "NO SOLUTION" in

the case where it is the initial state, otherwise we replace each transition s- t . c' by s- t . FailR
and we replace IOAR by its connected component; if the intersection of entering(FailR) and

(IIOAA∪OC) is not empty, for each transition s- t . FailR with t in the intersection, we return "NO

SOLUTION" in the case where s is the initial state, otherwise we replace each transition s'- t . s

by s'- t . FailR and we replace IOAR by its connected component, then we update the set

ConstrainedStates by assigning to it the set containing each state of IOAR where MTR(c) is not

18

empty. The complexity of this step in the worst case is polynomial in the number of states of IOAA

and C, and the number of elements in the alphabet of IOAA ||C (i.e. O(n3m3r3) where n=number of

states of A, m=number of states of C and r=number of element in the alphabet of A||C).

Procedure Remove-some-non-conforming-traces
IntActions :=(IC∪OC)\(IIOAA∪OIOAA);

NonSilentStates={s∈SIOAR | out(s)∩OIOAA≠Ø};

ConstrainedStates := {c∈SIOAR | MTR(c)≠Ø};

WHILE ConstrainedStates ≠Ø DO

c := an element of ConstrainedStates ;

ConstrainedStates := ConstrainedStates \{c};

Succint(c)={c'∈SR\{FailR} | ¡σ∈IntActions* such that c'=cσ};

ext-out-after(c) :=∪c'∈Succint(c) out(c')∩OIOAA ;

TempMT :=MTR(c);

WHILE TempMT≠Ø DO

Y := an element of TempMT;

TempMT := TempMT\{Y};

IF Y ∩ext-out-after(c)=Ø THEN // the constraints for state c are not satisfied

IF c=soIOAR THEN return "NO SOLUTION"; STOP;

ELSE
replace s- t . c by s- t . FailR for each t in entering(c)∩(IIOAA∪OIOAA);

MTR(c):=Ø; TempMT:=Ø; IOAR:=CC(IOAR);

ENDWHILE TempMT≠Ø

IF MTR(c)≠Ø THEN

WHILE Succint(c)≠Ø DO

c' := an element of Succint(c);

Succint(c) := Succint(c)\{c'};

IF Succint(c')∩NonSilentStates=Ø THEN

IF c'=soIOAR THEN return "NO SOLUTION"; STOP;

ELSE

replace s- t . c' by s- t . FailR for each t in entering(c');

IOAR:=CC(IOAR); Succint(c) := Succint(c)∩SIOAR;

ENDWHILE Succint(c)≠Ø

IF entering(FailR)∩(IIOAA∪OC)≠Ø THEN

TempTrans :={(s, t, FailR)∈TIOAR | t ∈(IIOAA∪OC)};

WHILE TempTrans≠Ø DO

19

(s', t', FailR) := an element of TempTrans;

IF s'=soIOAR THEN return "NO SOLUTION"; STOP;

ELSE

replace s" - t" . s' by s" - t ". FailR for each t" in entering(s');

IOAR:=CC(IOAR);

TempTrans :={(s, t, FailR)∈TIOAR | t ∈(IIOAA∪OC)};

ENDWHILE TempTrans≠Ø

ConstrainedStates := {c∈SIOAR | MTR(c)≠Ø};

ENDWHILE ConstrainedStates ≠Ø

For our example, the work done in Step 2 is as follow. After state 10, the required external

output y2 is not possible, then this state is replaced by FailR. Since now there exists a transition

labelled with a non-controllable action leading to FailR (9-x1->FailR) the state 9 is replaced by

FailR. The obtained connected component is shown in Figure 15, and the updated set of

constraints is MTR={(0, Ø), (1, {{y1}}), (2, Ø), (3, Ø), (4, Ø), (5, {{y2}}), (6, Ø), (7, Ø), (8,

Ø), (15, {{y3}})}.

0 51

15

x1

x3 y3

2

uz2

z3

z1

z4
7

z 2

6u

4

3

y1

y
2 x2

8

z 3y
2

Fail
y3

Figure 15 : the obtained IOA IOAR at the end of Step 2

Step 3. In this step, we associate to each state c of IOAR where MTR(c) is not empty, an IOA

CONST(c) whose set of traces is equal to the subset of TrIOAR(c) which is the union of the traces

that contain no external action and the traces that contain a single external action (an output action)

as their last element. This IOA will allow us in the following steps of the algorithm to characterize

the mandatory and the complete traces of the solution we are looking for. To be able to compose

CONST(c) with the IOA obtained from IOAR after hiding some actions and to preserve all the

possible external outputs after c in CONST(c), we assign the empty set to OCONST(c) and the set

containing all the actions present in IOAR to ICONST(c). The complexity in the worst case of this

step is polynomial in the number of states of IOAR (i.e. O(n2m2r) where n=number of states of A,

m=number of states of C and r=number of element in the alphabet of A||C).

20

Procedure Updating-information
FOR each state c in SIOAR\{FailR} such that MTR(c)≠Ø DO

IntActions :=(IC∪OC)\(IIOAA∪OIOAA);

TempStates := {c'∈SIOAR | ¡σ∈IntActions* such that c'=cσ};

TempTrans := {(s, t, s')∈TrIOAR | s, s'∈TempStates and t∈IntActions};

TempTransFinal := {(s, t, Final) | s∈TempStates and t∈leaving(s)∩OIOAA and st≠FailR};

TempTransFail := {(s, t, FailR)∈TrIOAR | s∈TempStates and t∈OIOAA};

IF TempTransFinal≠Ø THEN TempStates := TempStates∪{Final};

IF TempTransFail≠Ø THEN TempStates := TempStates∪{FailR};

TempTrans := TempTrans∪TempTransFinal∪TempTransFail;

CONST(c):=(TempStates, IIOAR∪OIOAR, Ø, TempTrans, c);

y2 y
1

z
4

z
1

uz
2

z3

Final

y
2

z
2

z
3

u

Final Fail

y
3

y3

Final

Figure 16 : The IOAs CONST(1), CONST(5) and CONST(15).

Step 4. In this step, we hide the actions that are in (II O A A"O C)\In and construct
H(IIOAA"OC)\In(IOAR). Since a state of the obtained automaton, denoted R1, is a subset of states of

IOAR, we declare any state of R1 which contains FailR as FailR1
. Moreover, we assign to

TempConstraint(soR1
) the set of pairs (MTR(c), CONST(c)) for c in soR1

 such that MTR(c) is not

empty. For each state s in SR1
\{soR1

, FailR1
}, if entering(s) contains some external actions, we

assign to TempConstraint(s) the set of pairs (MTR(c), CONST(c)) for c in s such that MTR(c) is

not empty, otherwise we assign to TempConstraint(s)) the set of pairs (MTR(c), CONST(c)) for c

in s such that MTR(c) is not empty and c is reachable in IOAR from c'' in s with an external action

in (IIOAA∪OC)\In, i.e. there exists s' in R1, c' in s' and c'' in s with s=s't, c''=c't.σ in IOAR and

c=c''u for σ in ((IIOAA∪OC)\In)* and u in (IIOAA∪OC)\In. The complexity in the worst case of this

step is exponential in the number of states of IOAR. We denote by ε the empty word.

Procedure Hide-actions-in-(IIOAA∪OC)\In

ConstrainedStates := {c∈SIOAR | MTR(c)≠Ø};

SR1
:=Ø; TR1

:=Ø; soR1
:={c∈SIOAR | ¡σ∈((IIOAA∪OC)\In)* such that c=(soIOAR)σ};

21

SR1
:=SR1

∪{soR1
}; TempStates := {soR1

}; L :=In∪(IC\IIOAA)∪(OIOAA\OC);

TempConstraint(soR1
) :={(MTR(c), CONST(c))| c∈soR1

∩ConstrainedStates}

WHILE TempStates≠Ø DO

s := an element of TempStates;

TempStates:=TempStates\{s};

FOR each t in L DO

FOR each c in s DO
Succh(c)={c'∈SIOAR| ¡σ∈((IIOAA∪OC)\In)+ such that c'=ct.σ};

s':=∪c∈sSucch(c);

s'':=s'∪{ct | c∈s};

IF s''≠Ø THEN
IF FailR∈s'' THEN TR1

:=TR1
∪{(s, t, FailR1

)}; SR1
:=SR1

∪{FailR1
};

ELSE
TR1

:=TR1
∪{(s, t, s'')};

IF s''{SR1
 THEN

SR1
:=SR1

∪{s''}; TempStates:=TempStates∪{s''};

TempConstraint(s''):=Ø;

IF t∈((OC\OIOAA)∪(IC\IIOAA)) THEN

TempConstraint(s''):={(MTR(c), CONST(c))| c∈s'∩ConstrainedStates}

∪TempConstraint(s'');

ELSE
TempConstraint(s''):={(MTR(c), CONST(c))| c∈s''∩ConstrainedStates};

ENDWHILE TempStates≠Ø

M PO

V

x1

x3 y3

z2

N

u

uz2

z 3 z1
z4 Q

z 3

y3 Fail

Figure 17 : The IOA R1

At the end of Step 4 the obtained IOA R1 for our example is shown in Figure 17 and we

have the following constraints :

TempConstraint(M)={({{y2}}, CONST(5))}, TempConstraint(O)={({{y1}}, CONST(1))} and

TempConstraint(V)={({{y3}}, CONST(15))}.

22

Step 5. In this step, we recursively remove the traces which lead to FailR1
. To achieve this, we

initialize the set ConstrainedStates with the set containing each state c of R1 where
TempConstraint(c) is not empty, and we remove all the transitions which lead to FailR1

. We repeat

the following processing until the set ConstrainedStates is empty : we remove from

ConstrainedStates an element s, and we assign TempConstraint(s) to a temporary set Temp; while

Temp is not empty, we remove from it an element (MTR(c), CONST(c)); we assign to CONST(c)

its composition with the IOA obtained from R1 where s is considered as the initial state; if there

exists an element in MTR(c) such that its intersection with the set of external outputs present in

CONST(c) is empty, then we return "NO SOLUTION" in the case where s is the initial state of R1,
otherwise we replace each transition s'-t .s by s'-t .FailR1

 and we replace R1 by its initially

connected component and we assign to Temp the empty set; if the intersection of entering(FailR1
)

and In is not empty, for each transition s"-t .FailR1
 with t in the intersection, we return "NO

SOLUTION" in the case where s" is the initial state, otherwise we replace each transition s'-t .s"
by s'-t .FailR1

 and we replace R1 by its initially connected component. Then we redefine the set

ConstrainedStates by assigning to it the set containing each state c of R1 where TempConstraint(c)
is not empty and we remove all the transitions which lead to FailR1

; if s remains in SR1
, we turn

our attention to those states in CONST(c), different from c and Final, from which we can not reach

a state where an external output occurs; for each such state c' in SCONST(c), we replace each

transition c"- t . c' by c"- t . FailCONST(c); then we replace CONST(c) by its initially connected

component; now for each transition c"- t . FailCONST(c), we determine a trace σ such that cσ =c"

and we replace the transition sσ -t .s' by sσ -t .FailR1
; if the intersection of entering(FailR1

) and In

is not empty, for each transition s"- t . FailR1
 with t in the intersection, we return "NO

SOLUTION" in the case where s" is the initial state, otherwise we replace each transition s'- t . s"
by s'- t . FailR1

 and we replace R1 by its initially connected component. Then we redefine the set

ConstrainedStates by assigning to it the set containing each state of R1 where TempConstraint(c) is
not empty and we remove all the transitions which lead to FailR1

. The complexity in the worst case

of this step is polynomial in the number of states of R1.

Procedure Remove-Fail-state
ConstrainedStates := {c∈SR1

 | TempConstraint(c)≠Ø};

IR1
 :=In ; OR1

 :=(IC\IIOAA)∪(OIOAA\OC);

TR1
 := TR1

\{(c, t, FailR1
)∈TR1

};

WHILE ConstrainedStates ≠Ø DO

s := an element of ConstrainedStates ;

ConstrainedStates :=ConstrainedStates \{s};

Temp := TempConstraint(s);

23

WHILE Temp ≠Ø DO

(MTR(c), CONST(c)) := an element of Temp;

Temp :=Temp\{(MTR(c), CONST(c))};
CONST(c) := CONST(c)|| (SR1

, IR1
, OR1

, TR1
, s);

Temp1 :=∪c'∈SCONST(c)
 out(c')∩OIOAA ;

Temp2 :=MTR(c);

WHILE Temp2≠Ø DO

Y := an element of Temp2;

Temp2 := Temp2\{Y};

IF Y ∩Temp1=Ø THEN
IF s=soR1

 THEN return "NO SOLUTION"; STOP;

ELSE
replace s'- t . s by s'- t . FailR1

 for each t in entering(s);

R1:=CC(R1); Temp:=Ø; Temp2:=Ø;
IF entering(FailR1

)∩In ≠Ø THEN

Temp3 :={(s", t, FailR1
)∈TR1

 | t ∈In};

WHILE Temp3≠Ø DO

(s", t, FailR) := an element of Temp3;

IF s"=soR THEN return "NO SOLUTION"; STOP;

ELSE
replace s' - t'. s" by s' - t'. FailR1

 for each t' in entering(s");

R1:=CC(R1);
Temp3 :={(s', t', FailR1

)∈TR1
 | t' ∈In};

ENDWHILE Temp3≠Ø

ConstrainedStates := {p∈SR | TempConstraint(p)≠Ø};

TR1
 := TR1

\{(p, t, FailR1
)∈TR1

};

ENDWHILE Temp2≠Ø
IF s∈SR1

 THEN

NonSilentStates={s'∈SCONST(c) | out(s')∩OIOAA≠Ø};

Temp4=SCONST(c)\{c, Final};

WHILE Temp4≠Ø DO

c' := an element of Temp4;

Temp4 := Temp4\{c'};

IFSuccint(c')∩NonSilentStates=Ø THEN

SCONST(c) := SCONST(c)∪{FailCONST(c)};

replace c"- t . c' by c"- t . FailCONST(c) for each t in entering(c');

24

CONST(c):=CC(CONST(c)); Temp4:=Temp4∩SCONST(c);

ENDWHILE Temp4≠Ø

IF FailCONST(c)∈SCONST(c) THEN

Temp5=Ø;

FOR each transition c'- t . FailCONST(c) DO
σt := the shortest trace in TrCONST(c) such that cσt =c';

Temp5 := Temp5∪{σt };

WHILE Temp5≠Ø DO
σt := an element of Temp5;

Temp5 := Temp5\{σt };

replace sσt - t . s' by sσt - t . FailR1
;

ENDWHILE Temp5≠Ø
IF entering(FailR1

)∩In ≠Ø THEN

Temp6 :={(s", t, FailR1
)∈TR1

 | t ∈In};

WHILE Temp6≠Ø DO

(s", t, FailR) := an element of Temp6;

IF s"=soR THEN return "NO SOLUTION"; STOP;

ELSE
replace s' - t'. s" by s' - t'. FailR 1

 for each t' in entering(s") ;

R1:=CC(R1);
Temp6 :={(s', t', FailR1

)∈TR1
 | t' ∈In};

ENDWHILE Temp6≠Ø

Temp:=Ø;

ConstrainedStates := {p∈SR | TempConstraint(p)≠Ø};

TR1
 := TR1

\{(p, t, FailR1
)∈TR1

};

ENDWHILE Temp≠Ø

ENDWHILE ConstrainedStates ≠Ø

M PO

V

x1

x3 y3

z2

N

u

uz2

z 3 z1
z4

y2 y
1

z4 z1

uz2
z3

Final

y
2

z
2

u

Final

y3

Final

Figure 18 : The IOAs R1, CONST(1), CONST(5) and CONST(15) after Step 5.

25

For our example, the work done in Step 5 is as follow. We first remove from R1 the
transition Q-y3->FailR1

. After updating the IOA CONST(5), the transition labelled by z3 leads to a

state from which no external output can be reached. Then the trace uz3 is used to replace the state Q
of R1 by FailR1

. After removing the transition P-z3->FailR1
, all the constraints are satisfied and the

obtained IOAs R1, CONST(1), CONST(5) and CONST(15) are shown in Figure 18.

Step 6. In this step, we construct the generic solution in the form of the IOAWOCT Sol . The

IOA IOASol is equal to R1. To obtain the sets MTSol and OCTSol , we initialize the sets MTSol(s)
and OCTSol(s) with the empty set for each state s in SIOASol

. If TempConstraint(s) is not empty

then for each element (MTR(c), CONST(c)), we assign to a temporary set Temp2 the set of traces

leading to the state Final in CONST(c), moreover for each element Y in MTR(c) if its intersection

with the set of external outputs occurring in c is empty then we add to MTSol(s) the projection over

the alphabet of IOASol of the subset of Temp2 containing traces which end with an element in Y;

we assign to a temporary set Temp3 the projection over the alphabet of IOASol of Temp2, and we

remove from Temp3 the empty word and the elements which are not in OCTSol(s) and which are

proper prefixes of elements not in OCTSol(s), and from OCTSol(s) we remove the elements which

are not in Temp3 and which are proper prefixes of elements not in Temp3. Then we assign to

OCTSol (s) its union with Temp3. Due to cycles labelled with internal actions, the sets OCTSol(c)

and MTSol(c) could be infinite. To represent such infinite sets we represent them as finite sets of

regular expressions or as finite sets of IOAs. The complexity in the worst case of this step is

polynomial in the number of states of R1.

Construction of the IOAWOCT Sol

IOASol := R1;

OCTSol :=Ø;

MTSol :=Ø;

L :=In∪(IC\IIOAA)∪(OIOAA\OC);

FOR each state s is in SIOASol
DO

OCTSol (s) :=Ø;

MTSol (s) :=Ø;

WHILE TempConstraint(s)≠Ø DO

(MTR(c), CONST(c)) := an element of TempConstraint(s);

TempConstraint(s) :=TempConstraint(s)\{(MTR(c), CONST(c))};

Temp1 := out(c)∩OC;

Temp2 :={σ∈TrCONST(c)(c) | cσ =Final};

WHILE MTR(c)≠Ø DO

Y := an element in MTR(c);

26

MTR(c) := MTR(c)\{Y};

IF Y ∩Temp1=Ø THEN
MTSol (s) :=MTSol (s)∪(PrL({σ∈Temp2 | PrOIOAA

{σ)∈Y});

ENDWHILE MTR(c)≠Ø

Temp3 :=PrL(Temp2)\{ε};

OCTSol (s) :=OCTSol (s)\{σ∈OCTSol (s) and σ∉Temp3 and σ is a proper prefix of an

element in Temp3};

Temp3 :=Temp3\{σ∈Temp3 and σ∉OCTSol (s) and σ is a proper prefix of an element

in OCTSol (s)};

OCTSol (s) :=OCTSol (s)∪Temp3;

ENDWHILE TempConstraint(s)≠Ø

MTSol (s):={Y∩OCTSol (s) | Y∈MTSol (s)};

MTSol (s):=MTSol (s)\{Y∈MTSol (s) | there exits Y'∈MTSol (s) with Y'⊂Y};

OCTSol (s) :=OCTSol (s)\{σ∈OCTSol (s) | length of σ is equal to 1};

OCTSol :=OCTSol ∪{(s, OCTSol (s))};

MTSol :=MTSol ∪{(s, MTSol (s))};

ENDFOR

Sol :=(IOASol, MTSol , OCTSol);

M PO

V

x1

x3 y3

z2

N

u

uz2

z 3 z1
z4

Figure 19 : The IOA IOASol.

For the obtained IOAWOCT Sol, IOASol is shown in Figure 19, and

MTSol ={(M, {{uz2}}), (O, {{u(z2u + z3u)*z1}}), (N, Ø), (P, Ø), (V, {{y3}})}, and

OCTSol ={(M, {uz2}), (O, {u(z2u + z3u)*z1, u(z2u + z3u)*z4}), (N, Ø), (P, Ø), (V, Ø)}.

Theorem 3 : Given a deterministic IOA C, a deterministic IOAWO A, and a given input set In

such that (IIOAA\IC)∪(OC\OIOAA)⊆In⊆IIOAA∪OC, if Algorithm 2 produces an IOAWOCT Sol then

(C||IOASol)≤confA, else there is no solution for (C||X)≤confA with the specified set of inputs In.

6.2 The set of solutions

The solution obtained by the algorithm above is a generic one, which means that we can

derive from it the set of solutions of the equation (C||X)≤confA.

27

Theorem 4 : Given a deterministic IOA C, a deterministic IOAWO A, and an input set In such

that (IIOAA\IC)"(OC\OIOAA)⊆In⊆IIOAA"OC, if Algorithm 2 produces an IOAWOCT Sol then for

any IOA B, with IB=In and OB=OSolS, the following propositions are equivalent :

i - (C||B)≤confA,

ii - B≤confSol.

Example : Figure 20 shows some solution IOAs which are subtypes of the generic solution Sol

shown in Figure 19.

A BC

D

x1

x3 y3

z2

E

u

u
z1

A BC

D

x1

x3 y3

z2

E

u

uz2

z 4

z1

A BC

I

x1

x3

y3

z2

E

u

u

z2

z3 z1

z 4
G

H Du

F
u

Figure 20 : Some subtypes of Sol.

7 The case of input/output Finite State Machines

We turn our attention now to see how the results of this paper can be adapted to deal with the

resolution of the equation (C||X)rA where the specifications of C and A are given as non-

deterministic partially specified input/output Finite State Machines and r represents the quasi-

equivalence or the reduction relation. In order to apply our algorithms in this context, we first

transform the specifications of C and A into the corresponding IOAs, denoted IOA(C) and

IOA(A), by unfolding the transitions. In the case where r is the quasi-equivalence relation, we

denote by A' the IOAWOCT IOA(A)woct, and in the case where r is the reduction criterion, we

denote by A' the IOAWOCT IOA(A)red, then we resolve the equation (IOA(C)||X)sA' under the

constraint IX=(IIOA(A)\IIOA(C))∪(OIOA(C)\OIOA(A)). If we obtain a generic solution Sol, we

construct the FSM FSMSol=(S, IIOASol, OIOASol, h, so). The set of states SIOASol enjoys a nice

property, it can be devided into two sets : the first set contains the states s such that leaving(s) is
included in IIOASol and entering(s) is not empty and included in OIOASol, this set contains the initial

state of IOASol; the second set contains the states s such that leaving(s) is not empty and included

28

in OIOASol and entering(s) are not empty and included in IIOASol. From this observation, the set of

states of FSMSol is equal to the first set; and for each state si of FSMSol, there is a transition

si→v/w→sk in FSMSol if there are transitions si→v→sj and sj→w→sk in IOASol. Since for any

solution D to the equation (C||X)rA the corresponding IOA IOA(D) is a solution to the equation

(IOA(C)||X)sA', the set of solutions to the equation (C ||X)rA is the set of FSMs quasi-

equivalent to an FSM derived from some subtype of Sol which is trace included in Sol. In the

particular case where the FSMs C and A are completely specified, the quasi equivalence relation

reduces to trace equivalence and we obtain the set of solutions to the equation for completely

specified FSMs and trace equivalence using the same algorithms.

We note that Theorem 4 of Section 6 provides a new exact characterization of the set of

solutions. In previous works it was necessary to check whether there is no livelock, i.e. cycle

labelled only with internal actions, when combining a candidate solution with the context C [4, 16,

22], or to assume that at least one of the FSMs, context or solution, has to be a Moore FSM [1].

8 Conclusion

We have presented in this paper an approach to solve the problem of submodule construction in

the realm of I/O automata. This problem may be formulated mathematically by the equation

(C||X)rA under the constraint IX=In, where C represents the specification of the known part of

the system, A represents the specification of the whole system, X represents the specification of

the submodule to be constructed, || is a composition operator, r is a conformance relation and

In is the required set of inputs for X. The conformance relations considered are the safe

realization criterion and the subtype relation. For the safe realization criterion the set of

solutions to the equation (if they exist) can be represented as the set of safe realizations of an I/O

automaton SolS. An algorithm for finding SolS is given. For defining the subtype relation we

enhance the I/O automata model to allow the description of mandatory behaviors and we show

that the set of solutions to the equation (if they exist) can be represented as the set of subtypes of

an I/O automaton with optional complete traces Sol. An algorithm for finding Sol is given.

We also show that the submodule construction problem for non-deterministic partially

specified input/output Finite State Machines is a particular case of this work for various criteria.

The algorithms proposed in this paper were implemented in Java in the context of a tool for the

construction of submodules [3].

29

References

[1] A. Aziz, F. Balarin, R. K. Brayton, M. D. DiBenedetto and A. Saldanha, Supervisory

Control of Finite State Machines, Proceedings of the 7th International Conference, CAV'95,

Liège, Belgium., pp. 279-292, July 3-5, 1995.

[2] A. Black, N. Hutchinson, E. Jul, H. Levy and L. Carter, Distribution and Abstract

Types in Emerald, IEEE Transaction on Software Engineering, vol. SE-13, no. 1, pp. 65-

76, January 1987.

[3] J. Drissi and G. v. Bochmann, Submodule construction tool, in the proceeding of

CIMCA'99, Vienna, Austria, 1999.

[4] J. Drissi, N. Yevtushenko, A. Petrenko and G. v. Bochmann, On the design of a

submodule based on the input/output FSM model, Technical Report no. 1120, DIRO,

University of Montreal, 1998.

[5] A. Gill, Introduction to the theory of Finite-State Machines, Mc Graw-Hill Book Company,

Inc, 1962.

[6] R. J. v. Glabbeek, The Linear Time-Branching Time Spectrum, Proceedings of CONCUR'90,

Theories of Consurrency : Unification and Extension, pp. 278-297, Amsterdam, The

Netherlands, August 27-30, 1990.

[7] E. Haghverdi and H. Ural, An Algorithm for Submodule Construcyion, Technical report of the

Department of computer Science, University of Ottawa, 1996.

[8] S. G. H. Kelekar George W., Synthesis of protocols and protocol converters using the

submodule construction approach, Proceedings of Protocol Specification, Testing and

Verification, XIII, A. Danthine, G. Leduc, P. Wolper (Editors), 1994.

[9] K. G. Larsen, Modal Specification, Proceedings of International Workshop, Automatic

Verification Methods for Finite State Machines, pp. 232-246, Grenoble, France, June 1989.

[10] B. Lin, G. de Jong and T. Kolks, Hierarchical Optimization of Asynchronous Circuits,

Proceedings of the 32nd Design Automation Conference, pp 712-717, 1995.

[11] G. Luo, A. Petrenko and G. v. Bochmann, Selecting test sequences for partially-specified

nondeterministic finite state machines, Technical report #864, University of Montreal, 1993.

[12] N. A. Lynch and M. R. Tuttle, AN INTRODUCTION TO INPUT/OUTPUT

AUTOMATA, MIT/LCS/TM-373, Laboratory for computer science, Massachusetts Institute

of Technology, Nov. 1998.

[13] P. Merlin and G. v. Bochmann, On the Construction of Submodule Specifications and

Communication Protocols, ACM Trans. on Programming Languages and Systems, Vol. 5,

No. 1, pp. 1-25, Jan. 1983.

30

[14] R. Negulescu and J. A. Brzozowski, Relative Liveness : from intuition to automated

verification, Research report CS-95-32, University of Waterloo, Canada, 1995.

[15] A. Petrenko, N. Yevtushenko and G. v. Bochmann, Experiments on Nondeterministic

Systems for the Reduction Relation, IWTCS'96.

[16] A. Petrenko and N. Yevtushenko, Solving asynchronous equations, in the proceeding of

FORTE/PSTV'98, Paris, 1998.

[17] M. Phalippou, Relations d'implantation et hypothèses de test sur des automates à entrées et

sorties, Thèse de Doctorat, Bordeaux, France, 1994.

[18] H. Qin and P. Lewis, Factorisation of Finite State Machines under Strong and

Observational Equivalences, Journal of Formal Aspects of Computing, Vol. 3, pp 284-307,

July-Sept. 1991.

[19] M. W. Shields, Implicit System Specification and the Interface Equation, Computer

Journal, Vol. 32, 5, pp. 399-412, Oct. 1989.

[20] P. H. Starke, Abstract automata, American Elsevier Publishing Company, Inc-New York,

1972.

[21] S. H. Unger, Asynchronous Sequential Switching Circuits, New York, Wiley-

Interscience, 1969.

[22] Y. Watanabe and R. K. Brayton, The maximal set of permissible behaviors for fsm

networks, Proc. of the IEEE/ACM International Conference on Computer-Aided Design, pp

316-320, 1993.

[23] D. Wood, Theory of Computation, John Wiley & Sons, Inc, 1987.

31

Annex : Proofs of Theorems and some Lemmas

Lemma 1: For an IOA A and a composite IOA B=B1||B2||...||Bn, with IA=IB, the following

propositions are equivalent :

i - S(Ã||B1||B2||...||Bn),

ii - for every IOA E, with IE=OA and OE=IA, S(E||A) ⇒ S(E||B1||B2||...||Bn).

Proof of Lemma 1 :
First part : (i) ⇒ (ii)

Let E be an IOA, with IE=OA and OE=IA, such that S(E ||A). We have to prove that

S(E||B1||B2||...||Bn). For a trace σ, we note σ[k] the prefix of σ of length k.

Suppose that there exists σ∈(I(E||B1||B2||...||Bn)∪O(E||B1||B2||...||Bn))* with |σ|=m such that :

PrE(σ)∈TrE.(IE∪{ε}) ∧ PrBi(σ)∈TrBi.(IBi∪{ε}) for 1≤i≤n

First, we show by induction that PrE(σ)∈TrA.

If PrE(σ[1])=ε then PrE(σ[1])∈TrA

If PrE(σ[1])∈IE, since S(Ã||B1||B2||...||Bn) then

PrE(σ[1])∈TrÃ.IÃ ∧ PrBi(σ[1])∈TrBi.(IBi∪{ε}) for 1≤i≤n ⇒ PrE(σ[1])∈TrA

If PrE(σ[1])∈OE, since S(E||A) then PrE(σ[1])∈TrE ∧ PrA(σ[1])∈TrA.IA ⇒ PrE(σ[1])∈TrA

Assume that PrE(σ[k])∈TrA for 1≤k<m, we put PrE(σ[k+1])=PrE(σ[k]).t

If t=ε then PrE(σ[k+1])∈TrA

If t∈IE, since S(Ã||B1||B2||...||Bn) then

PrE(σ[k+1])∈TrÃ.IÃ ∧ PrBi(σ[k+1])∈TrBi.(IBi∪{ε}) for 1≤i≤n ⇒ PrE(σ[k+1])∈TrA

If t∈OE, since S(E||A) then PrE(σ[k+1])∈TrE ∧ PrA(σ[k+1])∈TrA.IA ⇒ PrE(σ[k+1])∈TrA

By the principle of induction PrE(σ)∈TrA.

Since S(Ã||B1||B2||...||Bn) then
PrE(σ)∈TrA ∧ PrBi(σ)∈TrBi.(IBi∪{ε}) for 1≤i≤n ⇒ PrBi(σ)∈TrBi for 1≤i≤n

Since S(E||A) then PrE(σ)∈TrE.(IE∪{ε}) ∧ PrE(σ)∈TrA ⇒ PrE(σ)∈TrE

Therefore σ∈Tr(E||B1||B2||...||Bn).

We conclude that S(E||B1||B2||...||Bn).

Second part : (ii) ⇒ (i)

This part is obvious since Ã is an IAO with IÃ=OA and OÃ=IA, and we have S(E||A).

The proofs of Lemma 2, Lemma 3, Lemma 4, Lemma 5 and Lemma 6 are obvious.

32

Theorem 1 : Given two deterministic IOAs A and C , and given a set In such that

(IA\IC)∪(OC\OA)⊆In⊆IA∪OC, if Algorithm 1 produces an IOA SolS then (C || SolS) ≤S A and

In=ISolS, else there is no solution for (C ||X) ≤S A with the specified input alphabet In.

Proof of Theorem 1 :

First part :

If the Algorithm 1 produce an IOA SolS then we have to prove that (C||SolS)≤SA. Suppose

that there exists σ∈(I(C||SolS||Ã)∪O(C||SolS||Ã))* such that :

PrC(σ)∈TrC.(IC∪{ε})∧PrSolS(σ)∈TrSolS.(ISolS∪{ε})∧PrA(σ)∈TrA.(OA∪{ε})∧σ∉Tr(C||SolS||Ã)

we consider a σ such that for any proper prefix the previous property don't holds.

Since : PrC(σ)∈TrIef(C)∧PrSolS(σ)∈TrCh∧PrA(σ)∈TrIef(Ã) THEN σ∈TrR

This imply that σ leads to the Fail state at some step of algorithm 1 and then was removed.

Let σ=σ'.t,

IF t∈OSolS THEN PrSolS(σ)∉TrSolS(ISolS∪{ε}), contradiction.

IF t∈(IA∪OC) THEN after removing t, σ' leads to the Fail state and σ'∉Tr(C||SolS||Ã),

contradiction.

We conclude that (C||SolS)≤SA.

Second part :

If the algorithm returns "NO SOLUTION", then there exists σ∈(IA∪OC)*, with σ=σ'.t and

PrC(σ ')∈TrC and PrA(σ ')∈TrA and t∈(IA∩IC)∪(OA∩OC), such that (soR)σ=FailR.

Suppose that there exists an IOA B with IB=In and (C||B)≤SA. If σ'=ε then σ'∈Tr(C||B||Ã),

else by induction we show that σ'∈Tr(C||B||Ã), let |σ'|=n and σ'[k] the prefix of σ' of length k

for 0≤k≤n,

- Since (C||B)≤SA, then PrB(σ'[1])∈TrB.(IB∪{ε}) ⇒ σ'[1]∈Tr(C||B||Ã),

- Assume that σ'[k]∈Tr(C||B||Ã) for 1≤k<n, we will show that σ'[k+1]∈Tr(C||B||Ã)

Since σ'[k]∈Tr(C||B||A) then PrB(σ'[k])∈TrB, which imply PrB(σ'[k+1])∈TrB.(IB∪{ε})

Since (C||B)≤SA, then PrB(σ'[k+1])∈TrB.(IB∪{ε}) ⇒ σ'[k+1]∈Tr(C||B||Ã).

By the principle of induction σ'∈Tr(C||B||Ã).

Now, if t∈(IA∩IC) then PrC(σ)∈TrC.(IC∪{ε})∧PrB(σ)∈TrB.(IB∪{ε})∧PrA(σ)∈TrA but

σ∉Tr(C||B||Ã) since PrC(σ)∉TrC, contradiction.

If t∈(OA∩OC) then PrC(σ)∈TrC∧PrB(σ)∈TrB.(IB∪{ε})∧PrA(σ)∈TrA.(OA∪{ε}) but

σ∉Tr(C||B||Ã) since PrA(σ)∉TrA, contradiction.

We conclude that there is no IOA B with IB=In such that (C||B)≤SA.

Theorem 2 : Given two deterministic IOAs A and C , and given a set In such that

(IA\IC)∪(OC\OA)⊆In⊆IA∪OC, an IOA B, with IB=In and OB=OSolS, is a solution of the equation

(C || X) ≤S A iff B ≤S SolS.

33

Proof of Theorem 2 :
We will use in this proof the fact (C||SolS)≤SA , i.e. for each σ∈(I(C||SolS||Ã)∪O(C||SolS||Ã))*

PrC(σ)∈TrC.(IC∪{ε})∧PrSolS(σ)∈TrSolS.(ISolS∪{ε})∧PrA(σ)∈TrA.(OA∪{ε}) ⇒
σ∈Tr(C||SolS||Ã)

First part : (C||B)≤SA ⇒ B≤SSolS
Consider σ∈(ISolS∪OSolS)*, we have to prove that :

σ∈TrSolS.(OSolS∪{ε}) ∧ σ∈TrB.(IB∪{ε}) ⇒ σ∈Tr(B||SolS)

We put σ=σ1.t.

Case 1 : t∈ISolS,

we have σ∈TrSolS ∧ σ∈TrB.IB ,

by construction of SolS, there exists σ2.t∈Tr(C||Ã) such that PrSolS(σ2.t)=σ
therefore PrC(σ2.t)∈TrC ∧ PrA(σ2.t)∈TrA ∧ PrB(σ2.t)∈TrB.IB

since (C||B)≤SA then σ∈TrB

therefore σ∈Tr(B||SolS).

Case 2 : t∈OSolS

we have σ∈TrSolS.OSolS ∧ σ∈TrB ,

If σ1≠ε, by construction of SolS, there exists σ3∈Tr(C||Ã) such that PrSolS(σ3)=σ1 and

PrSolS(σ3[k])≠σ1 for 0≤k<|σ3|, else we put σ3=ε
therefore PrC(σ3.t)∈TrC.(IC∪{ε})∧ PrA(σ3.t)∈TrA.(OA∪{ε}) ∧ PrB(σ3.t)∈TrB

since (C||B)≤SA then σ3.t∈Tr(C||Ã)

If PrB(σ3.t)∉TrSolS, by construction of SolS there exists σ3.σ4.t.σ5.t'∈Tr(Ief(C)||Ief(Ã))

which leads to Fail with σ4∈((IA∪OC)\In)*, σ5∈(IA∪OC)* and t'∈((IA∩IC)∪(OA∩OC))

since (C||B)≤SA then PrB(σ3.σ4.t.σ5)∈TrB

Now, if t'∈(IA∩IC) then

PrC(σ3.σ4.t.σ5.t')∈TrC.(IC∪{ε})∧PrB(σ3.σ4.t.σ5.t')∈TrB.(IB∪{ε})

∧PrA(σ3.σ4.t.σ5.t')∈TrA

but σ3.σ4.t.σ5.t'∉Tr(C||B||Ã) since PrC(σ3.σ4.t.σ5.t')∉TrC, contradiction.

If t'∈(OA∩OC) then

PrC(σ3.σ4.t.σ5.t')∈TrC∧PrB(σ3.σ4.t.σ5.t')∈TrB.(IB∪{ε})

∧PrA(σ3.σ4.t.σ5.t')∈TrA.(OA∪{ε})

but σ3.σ4.t.σ5.t'∉Tr(C||B||Ã) since PrA(σ3.σ4.t.σ5.t')∉TrA, contradiction.

therefore PrB(σ3.t)∈TrSolS and σ∈Tr(B||SolS)

We conclude that B≤SSolS
Second part : B≤SSolS ⇒ (C||B)≤SA

Consider σ∈(I(C||Ã)∪O(C||Ã))*, we have to prove that :

PrC(σ)∈TrC.(IC∪{ε})∧PrB(σ)∈TrB.(IB∪{ε})∧PrA(σ)∈TrA.(OA∪{ε}) ⇒ σ∈Tr(C||B||Ã)

34

We put σ=σ1.t, with σ1∈Tr(C||B||Ã)

Let σ'=PrB(σ1) and |σ'|=n, we show by induction that σ'∈TrSolS

If σ'[1]∈OSolS, since B≤SSolS then σ'[1]∈TrSolS.OSolS ∧ σ'[1]∈TrB ⇒ σ'[1]∈TrSolS

If σ '[1]∈ ISolS , then there exists a prefix σ 2 of σ 1 such that σ 2= σ 3.σ '[1] and

PrSolS(σ2)=σ'[1], since (C||SolS)≤SA then

PrC(σ2)∈TrC ∧ PrSolS(σ2)∈TrSolS.ISolS ∧ PrA(σ2)∈TrA ⇒ σ'[1]=PrSolS(σ2)∈TrSolS

Assume that σ'[k]∈TrSolS for 1≤k<n, we put σ'[k+1]=σ'[k].t '

If t'∈OSolS, since B≤SSolS then σ'[k+1]∈TrSolS.OSolS ∧ σ'[k+1]∈TrB ⇒ σ'[k+1]∈TrSolS

If t'∈ISolS, then there exists a prefix σ4 of σ1 such that σ4=σ5.t' and PrSolS(σ4)=σ'[k+1],

since (C||SolS)≤SA then

PrC(σ4)∈TrC ∧ PrSolS(σ4)∈TrSolS.ISolS ∧ PrA(σ4)∈TrA ⇒ σ'[k+1]=PrSolS(σ4)∈TrSolS

By the principle of induction σ'∈TrSolS, therefore σ1∈Tr(C||SolS||Ã).

Case 1 : t∈OSolS,

We have PrSolS(σ)∈TrB, and since B≤SSolS then PrSolS(σ)∈TrSolS

since (C||SolS)≤SA then

PrC(σ)∈TrC.(IC∪{ε})∧PrSolS(σ)∈TrSolS∧PrA(σ)∈TrA.(OA∪{ε}) ⇒ σ∈Tr(C||SolS||Ã)

therefore σ∈Tr(C||A) and then σ∈Tr(C||B||Ã)

Case 2 : t∉OSolS,

since (C||SolS)≤SA

PrC(σ)∈TrC.(IC∪{ε})∧PrSolS(σ)∈TrSolS.(ISolS∪{ε})∧PrA(σ)∈TrA.(OA∪{ε}) ⇒
σ∈Tr(C||SolS||Ã)

If t∈ISolS then PrSolS(σ)=σ'.t∈TrSolS

since B≤SSolS then σ'.t∈TrB therefore σ∈Tr(C||B||Ã)

If t∉ISolS then PrB(σ)=σ'∈TrS therefore σ∈Tr(C||B||Ã)

We conclude that (C||B)≤SA.

Theorem 3 : Given a deterministic IOA C, a deterministic IOAWO A, and a given input set In

such that (IIOAA\IC)∪(OC\OIOAA)⊆In⊆IIOAA∪OC, if Algorithm 2 produces an IOAWOCT Sol then

(C||IOASol)≤confA, else there is no solution for (C||X)≤confA with the specified set of inputs In.

Proof of Theorem 3 :

First part : (C||IOASol)≤confA

If Algorithm 2 produces an IOAWCT Sol then we have to prove that (C||IOASol)≤confA. By

definition of the relation ≤conf, this is equivalent to (C||IOASol)≤SIOAA and (C||IOASol)≤PA.

- (C||IOASol)≤SIOAA is equivalent to IOASol≤SSolS
Consider σ∈(ISolS∪OSolS)*, by construction IOASol is trace included in SolS
Then σ∈TrSolS.OSolS ∧ σ∈TrIOASol

 ⇒ σ∈TrSolS

35

We put σ=σ1.t, with t∈ISolS and suppose that

σ∈TrSolS ∧ σ∈TrIOASol
.ISolS ∧ σ∉TrIOASol

Then t was removed from Tr (C ||SolS | |IOAA), but t∈ ISolS implies σ 1∉ TrIOA Sol
,

contradiction.

Therefore IOASol ≤SSolS
- To prove (C||IOASol)≤PA, we have two cases :

case 1 : If MTA(soIOAA)≠Ø then

i - suppose that there exists Y∈MTA((soIOAA
)) such that

PrIOAA
(Tr(C||IOASol)((so(C||IOASol))))∩Y=Ø

Then in Step 2 or Step 5 of Algorithm 2, "NO SOLUTION" is returned, contradiction.
ii - suppose that there exists σ1∈Tr(C||IOASol)((so(C||IOASol))) such that

PrIOAA
(σ1)=ε and PrIOAA

(Tr(C||IOASol)((so(C||IOASol))σ2))∩out((soIOAA
))=Ø

Then in Step 2 or Step 5 of Algorithm 2 σ1 will be removed from Tr(C||SolS||IOAA),

Then σ1∉Tr(C||IOASol||IOAA) and therefore σ1∉Tr(C||IOASol), contradiction.

case 2 : consider σ=σ1.t∈Tr(C||IOASol) such that

t∈(IIOAA
∪OIOAA

), σ'=PrIOAA
(σ)∈TrIOAA

 and MTA((soIOAA
)σ')≠Ø

We have σ∈Tr(C||IOASol||IOAA),

i - suppose that there exists Y∈MTA((soIOAA
)σ') such that

PrIOAA
(Tr(C||IOASol)((so(C||IOASol))σ))∩Y=Ø

Then in Step 2 or Step 5 of Algorithm 2 σ will lead to FailR1
 and t will be removed

Therefore σ∉Tr(C||IOASol||IOAA), contradiction.

ii - suppose that there exists σ2∈Tr(C||IOASol)((so(C||IOASol))σ) such that

PrIOAA
(σ2)=ε and PrIOAA

(Tr(C||IOASol)((so(C||IOASol))σσ2))∩out((soIOAA
)σ')=Ø

Then in Step 2 or Step 5 of Algorithm 2 σσ2 will be removed from Tr(C||SolS||IOAA),

Then σσ2∉Tr(C||IOASol||IOAA) and therefore σσ2∉Tr(C||IOASol), contradiction.

Therefore (C||IOASol)≤PA.

We conclude that (C||IOASol)≤confA.

Second part :

If the generic solution SolS does not exists, we have shown in Theorem 1 that there is no

solution for (C||X)≤SIOAA with the specified set of input In and therefore there is no soution

for (C||X)≤confA with the specified set of input In.

Now, suppose that the generic solution SolS exists, and Algorithm 2 return "NO

SOLUTION", and there exists an IOA B with (C||B)≤confA,

Since (C||SolS)≤SIOAA and (C||B)≤SA then by Theorem 2 B≤SSolS,

Therefore Tr(C||B||IOAA)⁄Tr(C||SolS||IOAA)

36

Since (C||B)≤confA, any time we remove a trace from Tr(C||SolS||IOAA) in Step 2 or Step 5,

this trace can not be in Tr(C||B||IOAA),

Algorithm 2 return "NO SOLUTION" if the initial state of C||SolS||IOAA must be removed

due to the elimination of a trace in step 2 or Step 5,

Therefore the initial state of C||B||IOAA can not satisfy a constraint, contradiction.

We conclude that there is no IOA B such that (C||B)≤confA.

Theorem 4 : Given a deterministic IOA C, a deterministic IOAWO A, and an input set In such

that (IIOAA\IC)∪(OC\OIOAA)⊆In⊆IIOAA∪OC, if Algorithm 2 produces an IOAWOCT Sol then for

any IOA B, with IB=In and OB=OSolS, the following propositions are equivalent :

i - (C||B)≤confA,

ii - B≤confSol.

Proof of Theorem 4 :
First part : (C||B)≤confA ⇒ B≤confSol

1 - The proof of B ≤SIOASol

consider σ∈(IB∪OB)* and let |σ|=n, we will prove that :

σ∈TrIOASol.(OB∪{ε})∧ σ∈TrB .(IB ∪{ε}) ⇒ σ∈Tr(B||IOASol)

Since (C||B)≤SA then by Theorem 2 B ≤SSol
S

Therefore Tr(C||B||IOAA)⁄Tr(C||SolS||IOAA)

Case 1 : σ∈TrIOASol ∧ σ∈TrB .IB

Since TrIOASol⊆TrSolS then σ∈TrSolS∧ σ∈TrB .IB ⇒ σ∈TrB

 Therefore σ∈Tr(B||IOASol)

Case 2 : σ∈TrIOASol.OB ∧ σ∈TrB

Since TrIOASol⊆TrSolS then σ∈TrSolS.OSolS ∧ σ∈TrB ⇒ σ∈TrSolS

We put σ=σ1.t white t∈OB,

Suppose that σ∉TrIOASol, since σ1∈TrIOASol then σ was removed from TrSolS in Step 2

or in Step 5

- σ was removed from TrSolS in Step 2

Then there exists σ2.t∈Tr(C||SolS||IOAA) such that PrSolS(σ2.t)=σ
Moreover σ2.t∈Tr(C||B)

Let σ3=σ4.t1=PrA(σ2) and σ2=σ5.t1.σ6 such that PrA(σ5.t1)=σ3,

There exists Y∈MTA((soIOAA)σ3) such that

Y∩Tr(C||SolS||IOAA)(so(C||SolS||IOAA))σ5.t1)=Ø

Since (C||B)≤PA, then there exists σ7.t2∈Tr(C||B)(so(C||B))σ5.t1) such that

PrA(σ7.t2)=t2∈Y

Therefore σ8=(σ5.t1.σ7.t2)∈Tr(C||B||IOAA)

37

Since B ≤SSol
S
 and (C||Sol

S
)≤SA then σ8∈Tr(C||SolS||IOAA)

Contradiction with the fact that σ was removed from TrSolS in Step 2.

- σ was removed from TrSolS in Step 5

Then σ1.t leads to FailR1
 at some iteration of Step 5

Since Tr(C||B||IOAA)⁄Tr(C||SolS||IOAA), C||B is not a conforming implementation of A,

Contradiction.

Then we have σ∈TrIOASol and then σ∈Tr(B||IOASol)

We conclude B ≤SIOASol

2 - The proof of B ≤PSol

Consider σ∈TrB such that σ∈TrIOASol and MTSol((soIOASol)σ)≠Ø

Let Y∈MTSol((soIOASol)σ), by construction of Sol there exists

σ1∈Tr(C||IOASol||IOAA) , σ2∈TrIOAA, Y2∈MTA((soIOAA)σ2),

Y1⊆Tr(C||IOASol||IOAA)((so(C||IOASol||IOAA))σ1) and

Y3⊆Tr(C||IOASol||IOAA)((so(C||IOASol||IOAA))σ1)

such that

σ=PrB(σ1), σ2=PrIOAA(σ1), Y=PrB(Y1), OCTSol((soIOASol)σ)=PrB(Y3), PrIOAA(Y1)⊆Y2

and for each β.t∈Tr(C||IOASol||IOAA)((so(C||IOASol||IOAA))σ1) with t∈OIOAA,

PrA(β.t)=t∈Y2 ⇒ β.t∈Y1

PrA(β.t)=t∈OCTA((soIOAA)σ2) ⇒ β.t∈Y3

i - Since σ1∈Tr(C||IOASol||IOAA) and PrB(σ1)∈TrB then σ1∈Tr(C||B||IOAA)

Since (C ||B)≤P A then there exists σ 3= σ 4 .t1∈ Tr (C ||B)(so(C ||B))σ 1) such that

PrIOAA(σ3)=t1∈Y2

Since B ≤SIOASol and (C||IOASol)≤SIOAA then σ1.σ3∈Tr(C||IOASol||IOAA)

Therefore σ3∈Y1 and then PrB(σ3)∈Y

Then TrB((soB)σ)∩Y≠Ø

ii - Let σ5=σ6.t2∈TrB((soB)σ) such that

σ5∈Pref(OCTSol((soIOASol)σ)) and σ5∉OCTSol((soIOASol)σ)

There exists σ7=σ1.σ8.t2∈Tr(C||IOASol||IOAA) such that PrB(σ8.t2)=σ5

Since σ7∈Tr(C||IOASol||IOAA) and PrB(σ7)∈TrB then σ7∈Tr(C||B||IOAA)

Since (C||B)≤PA then there exists σ9=σ10.t3∈Tr(C||B)(so(C||B))σ7) such that

PrIOAA(σ9)=t3∈OCTA((soIOAA)σ2)

Since B ≤SIOASol and (C||IOASol)≤SIOAA then σ7.σ9∈Tr(C||IOASol||IOAA)

Therefore σ10=σ8.t2.σ9∈Y3 and then PrB(σ10)∈OCTSol((soIOASol)σ)

We conclude B ≤PSol

Second part : B≤confSol ⇒ (C||B)≤confA

1 - The proof of (C||B)≤SIOAA

38

We have B ≤SIOASol and IOASol ≤SSolS, consider σ∈(IB∪OB)* and let |σ|=n, we will

prove that : σ∈TrSolS.(OB ∪{ε})∧ σ∈TrB .(IB ∪{ε})⇒ σ∈Tr(B||SolS)

If n>1, we show by induction that σ[n-1]∈TrIOASol

If σ[1]∈OB, since B ≤SIOASol then σ[1]∈OB ∧ σ[1]∈TrB ⇒ σ[1]∈TrIOASol

If σ[1]∈IB, since IOASol ≤SSolS then σ[1]∈IB ∧ σ[1]∈TrSolS ⇒ σ[1]∈TrIOASol

Assume that σ[k]∈TrIOASol for 1≤k<n-1, we put σ[k+1]=σ[k].t

If t∈OB, since B ≤SIOASol then σ[k+1]∈TrIOASol.OB ∧ σ[k+1]∈TrB ⇒ σ[k+1]∈TrIOASol

If t∈IB, since IOASol ≤SSolS then σ[k+1]∈TrIOASol.IB ∧ σ[k+1]∈TrSolS ⇒
σ[k+1]∈TrIOASol

By the principle of induction we have σ[n-1]∈TrIOASol

Case 1 : σ∈TrSolS.OSolS ∧ σ∈TrB

Since B ≤SIOASol then σ∈TrIOASol.OB ∧ σ∈TrB ⇒ σ∈TrIOASol

And since IOASol ≤SSolS then σ∈TrSolS.OB ∧ σ∈TrIOASol ⇒ σ∈TrSolS

Therefore σ∈Tr(B||SolS)

Case 2 : σ∈TrSolS ∧ σ∈TrB .IB

Since IOASol ≤SSolS then σ∈TrSolS∧ σ∈TrIOASol .IB ⇒ σ∈TrIOASol

And since B ≤SIOASol then σ∈TrIOASol ∧ σ∈TrB .IB ⇒ σ∈TrB

Therefore σ∈Tr(B||SolS)

Therefore B ≤SSolS which is equivalent by Theorem 2 to (C||B)≤SIOAA

2 - The proof of (C||B)≤PA

suppose that MTA(soIOAA)≠Ø and consider an Y∈MTA(soIOAA),

By construction of Sol there exists Y2⊆Tr(C||IOASol||IOAA) such that Y2≠Ø, and for each

element β∈Y2 PrIOAA(β)∈Y

a - Y2∩OC≠Ø

There exists y∈Y2∩OC such that y∈Tr(C||IOASol||IOAA)

Since (C||B)≤SIOAA then

PrC(y)∈TrC ∧PrB(y)∈TrB.IB ∧PrIOAA(y)∈TrIOAA ⇒ y∈Tr(C||B||IOAA)

Therefore PrIOAA(Tr(C||B))∩Y≠Ø

b - Y2∩OC=Ø

Y3=PrB(Y2)∈MTSol (soIOASol)

Since B≤PSol, there exists σ5∈Y3 such that σ5∈TrB

Therefore there exists σ6∈Y2 such that PrB(σ6)=σ5

Since σ6∈Tr(C||IOASol||IOAA) then PrC(σ6)∈TrC

Moreover PrB(σ6)=σ5∈TrB , Then σ6∈Tr(C||B)

Therefore PrIOAA(Tr(C||B))∩Y≠Ø

ii - Suppose that there exists σ''∈Tr(C||B) such that PrIOAA(σ'')=ε

39

Let |σ''|=n, we show by induction that σ''∈TrIOASol

If σ''[1]∈IB, since (C||IOASol)≤SIOAA then

PrC(σ''[1])∈TrC ∧PrB(σ''[1])∈TrIOASol.IB ∧PrIOAA(σ''[1])∈TrIOAA ⇒ σ''[1]∈TrIOASol

If σ''[1]∈OB, since B ≤SIOASol then

σ''[1]∈TrIOASol.OB ∧ σ''[1]∈TrB ⇒ σ''[1]∈TrIOASol

Assume that σ''[k]∈TrIOASol for 1≤k<n, we put σ''[k+1]=σ''[k].u

If u∈IB, since (C||IOASol)≤SIOAA then

PrC(σ''[k+1])∈TrC ∧PrB(σ''[k+1])∈TrIOASol.IB ∧PrIOAA(σ''[k+1])∈TrIOAA ⇒
σ''[k+1]∈TrIOASol

If u∈OB, since B ≤SIOASol then

σ''[k+1]∈TrIOASol.OB ∧ σ''[k+1]∈TrB ⇒ σ''[k+1]∈TrIOASol

By the principle of induction we have σ''∈TrIOASol

Therefore σ''∈Tr(C||IOASol||IOAA)

Since (C ||I O A Sol)≤P A , there exists Y 4⊆ T r (C ||I O A Sol ||I O A A) such that Y 4≠ Ø ,

Y5=PrB(Y4)⊆OCTSol (soIOASol) and for each element β∈Y4, σ '' is a prefix of β and

PrIOAA(β)∈OCTA(soIOAA)

Since B ≤PSol, there exists σ9∈TrB(soB) such that σ9∈Y5

Moreover there exists σ10∈Y4 such that σ10∈Tr(C||IOASol||IOAA) and PrB(σ10)=σ9

Therefore σ10∈Tr(C||B||IOAA) and PrIOAA(σ10)∈OCTA(soA).

Consider σ=σ1.t∈Tr(C||B) such that t∈(IIOAA∪OIOAA) and σ2=PrIOAA(σ)∈TrIOAA,

We put σ'=PrB(σ) and let |σ'|=n, we show by induction that σ'∈TrIOASol

If σ'[1]∈IB, then there exists a prefix σ3 of σ such that PrB(σ3)=σ'[1]

Since (C||IOASol)≤SIOAA Then

PrC(σ3)∈TrC ∧PrB(σ3)∈TrIOASol.IB ∧PrIOAA(σ3)∈TrIOAA ⇒ σ'[1]∈TrIOASol

If σ'[1]∈OB, since B ≤SIOASol then σ'[1]∈OB ∧ σ'[1]∈TrB ⇒ σ'[1]∈TrIOASol

Assume that σ'[k]∈TrIOASol for 1≤k<n, we put σ'[k+1]=σ'[k].u

If u∈IB, then there exists a prefix σ4 of σ such that PrB(σ4)=σ'[k+1]

Since (C||IOASol)≤SIOAA Then

PrC(σ4)∈TrC ∧PrB(σ4)∈TrIOASol.IB ∧PrA(σ4)∈TrA ⇒ σ'[k+1]∈TrIOASol

If u∈OB, since B ≤SIOASol then σ'[k+1]∈TrIOASol.OB ∧ σ'[k+1]∈TrB ⇒
σ'[k+1]∈TrIOASol

By the principle of induction we have σ'∈TrIOASol

Therefore σ∈Tr(C||IOASol||IOAA)

iii - Now suppose that MTA((soIOAA)σ2)≠Ø and consider an Y∈MTA((soIOAA)σ2),

By construction of Sol there exists Y2⊆Tr(C||IOASol||IOAA)((so(C||IOASol||IOAA))σ) such that

Y2≠Ø, and for each element β∈Y2 PrIOAA(β)∈Y

40

a - Y2∩OC≠Ø

There exists y∈Y2∩OC such that σy∈Tr(C||IOASol||IOAA)

Since (C||B)≤SIOAA then

PrC(σy)∈TrC ∧PrB(σy)∈TrB.IB ∧PrIOAA(σy)∈TrIOAA ⇒ σy∈Tr(C||B||IOAA)

Therefore PrIOAA(Tr(C||B)((so(C||B))σ))∩Y≠Ø

b - Y2∩OC=Ø

Y3=PrB(Y2)∈MTSol ((soIOASol)σ')

Since B≤PSol, there exists σ5∈Y3 such that σ5∈TrB((soB)σ')

Therefore there exists σ6∈Y2 such that PrB(σ6)=σ5

Since σ.σ6∈Tr(C||IOASol||IOAA) then PrC(σ.σ6)∈TrC

Moreover PrB(σ.σ6)=σ'.σ5∈TrB , Then σ.σ6∈Tr(C||B)

Therefore PrIOAA(Tr(C||B)((so(C||B))σ))∩Y≠Ø

iv - Suppose that there exists σ''∈Tr(C||B)((so(C||B))σ) such that PrIOAA(σ'')=ε
Let |σ''|=n, we show by induction that σ''∈TrIOASol

If σ''[1]∈IB, then there exists a prefix σ7 of σ.σ'' such that PrB(σ7)=σ'.σ''[1]

Since (C||IOASol)≤SIOAA then

PrC(σ7)∈TrC ∧PrB(σ7)∈TrIOASol.IB ∧PrIOAA(σ7)∈TrIOAA ⇒ σ'.σ''[1]∈TrIOASol

If σ''[1]∈OB, since B ≤SIOASol then

σ'.σ''[1]∈TrIOASol.OB ∧ σ'.σ''[1]∈TrB ⇒ σ'.σ''[1]∈TrIOASol

Assume that σ'.σ''[k]∈TrIOASol for 1≤k<n, we put σ'.σ''[k+1]=σ'.σ''[k].u

If u∈IB, then there exists a prefix σ8 of σ.σ'' such that PrB(σ8)=σ'.σ''[k+1]

Since (C||IOASol)≤SIOAA then

PrC(σ8)∈TrC ∧PrB(σ8)∈TrIOASol.IB ∧PrIOAA(σ8)∈TrIOAA ⇒ σ'.σ''[k+1]∈TrIOASol

If u∈OB, since B ≤SIOASol then

σ'.σ''[k+1]∈TrIOASol.OB ∧ σ'.σ''[k+1]∈TrB ⇒ σ'.σ''[k+1]∈TrIOASol

By the principle of induction we have σ'.σ''∈TrIOASol

Therefore σ.σ''∈Tr(C||IOASol||IOAA)

Since (C||IOASol)≤PA, there exists Y4⊆Tr(C||IOASol||IOAA)((so(C||IOASol||IOAA))σ) such that

Y4≠Ø, Y5=PrB(Y4)⊆OCTSol ((soIOASol)σ') and for each element β∈Y4, σ'' is a prefix of

β and PrIOAA(β)∈OCTA((soIOAA)σ2)

Since B ≤PSol, there exists σ9∈TrB((soB)σ') such that σ9∈Y5

Moreover there exists σ10∈Y4 such that σ.σ10∈Tr(C||IOASol||IOAA) and PrB(σ10)=σ9

Therefore σ.σ10∈Tr(C||B||IOAA) and PrIOAA(σ10)∈OCTA((soA)σ2).

We conclude that (C||B)≤PA.

